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Large eddy simulations using hybrid unstructured meshes are performed for different
problems including external flows and internal flows. This code is based on a novel variant
of high order flux reconstruction methods which is robust and efficient. Both implicit
second order backward differentiation formula(BDF2) with nonlinear block LU-SGS as
inner iterative and an explicit space-time method are implemented for unsteady time-
marching. A prediction-correction type space-time method was introduced, which allows
very efficient local time-stepping for unsteady simulations including LES. Time accuracy is
ensured by the time-integration of correction flux under the space-time framework by using
an extended continuous Runge-Kutta method. This method is smoothly combined with
the high order flux-reconstruction discretization. The accuracy, efficiency and the potential
to solve large-scale, real geometry problems of the new solver algorithm is demonstrated.

I. Introduction

Computational Fluid Dynamic(CFD) is widely used in different industry areas at present, while almost
all commercial and government codes are based on algorithms developed more than 20 years ago, these
codes are successfully to solve complex geometry problems with the support of turbulence modeling but
are generally limited to 2nd order accuracy. With the increasing computational abilities, Large eddy sim-
ulations(LES) are more and more attractive for industry for its more general ability to handle turbulence
without modeling. Whereas, there are still two bottlenecks which inhibit LES to solve realistic problems
as the current production codes: one is the hybrid unstructured meshes are necessary to handling these
geometries, the simulations with at most 2nd order accuracy on these meshes by using current production
solvers limit their ability to correctly represent the whole energy spectrum resolved in LES, which indicate
high order methods on unstructured grid have more advantages for high resolution LES; another challenge
is the huge computational cost caused by not just high order space discretization requirements but also high
accurate time resolution for vortex preserving. In this work, the local reconstruction, high order, differen-
tial form Flux Reconstruction(FR) method are implemented to support tetrahedrons, pyramids, prisms and
hexahedrons up to fourth order, which can achieve very high efficient space discretization and is able to
resolve turbulence using much coarser mesh than 2nd methods; in order to improve unsteady time marching
efficiency, both implicit method and explicit method are adopted and tested, especially an efficient space-
time extension of FR method is presented which allows local time-stepping for each cell in time-accurate
simulations and is able to achieve arbitrary order along the time direction. Compared to traditional time
discretizations using uniform timesteps, this extension overcome the small cell size limitation and makes the
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computational cost of LES scalable, at least in principle, for any scale problem, especially for large scale
and multi-scale problems within complex geometries. This new method has the potential to be significantly
faster than conventional approaches for large-scale and multi-scale simulations. In the present work, the
large eddy simulations for internal flows including low pressure turbine blade, low pressure turbine blade
with endwall, and also periodic arrays of a single film-cooling hole ; for external flows, the wall-resolved
LES for the low Reynolds number flow around a sphere, high Reynolds number flow around a sphere and
high Reynolds number around high lift airfoil, are presented. Detail flow structures and comparison with
experiment data for selected simulations are presented and discussed. There is no explicit sub-grid model
implemented in this work which indicate all simulations are performed by implicit LES. The efficiency of the
new solver algorithm is demonstrated.

II. Flux Reconstruction Discretization

This differential form FR method was firstly introduced by Huynh1 for 1D problems and extended
to quadrilaterals and hexahedrons by simple tensor-product. Wang and Gao2 extended this method to
simplex elements with the correction procedure via reconstruction method in 2009. Based on the same idea,
Jameson et al34 identified an infinite range of high-order energy stable flux reconstruction (FR) schemes on
1D elements, quadrilaterals, hexahedrons and 2D triangular elements. The FR method can be cast the same
as discontinuous galerkin(DG) method mathematically and is proved nonlinearly stable for all elements if
aliasing error can be damped.5 Based on the previous implementation, special FR coefficients are developed
to enhance the robustness for complex unstructured meshes6 and adopted in this work.

In FR discretization, in order to deal with general unstructured meshes including high order curved

Tetrahedron Pyramid Prisms Hexahedrons

Fig 1. 4th order solution points for 3D Elements

cells, all elements are transformed from the physical domain (x, y, z) to computational(local) domain (ξ, η, ζ).
Following the coordinates transformation, define

Û = |J |U
F ξ = |J |(ξxF x + ξyF

y + ξzF
z)

F η = |J |(ηxF x + ηyF
y + ηzF

z)

F ζ = |J |(ζxF x + ζyF
y + ζzF

z) (1)

The Jacobian matrix J corresponding to the transformation takes the following form

J =
∂(x, y, z)

∂(ξ, η, ζ)
=

 xξ xη xζ

yξ yη yζ
zξ zη zζ

 (2)

The governing equation of Navier-Stokes equation in computational(local) domain becomes

∂Û

∂t
+∇ξ · ~F ξ =

∂Û

∂t
+

∂F ξ

∂ξ
+

∂F η

∂η
+

∂F ζ

∂ζ
= 0 (3)
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figure 1 gives the 4th order solution points for different kinds of 3D elements including for the tetrahedrons,
pyramids, prisms and hexahedrons which make up a general, hybrid unstructured meshes. For the j-th
solution points of i-th element in a non-overlapped mesh, the uniform FR discretization for different types
of elements are given as

∂Ûh
i,j

∂t
+ (∇ξ · ~F ξ(Uh

i ))i,j +

Ns∑
f=1

Kf∑
l=1

αj,f,l(F̃
ξ|n − F ξ|n)i,f,l = 0 (4)

Where Ns is number of sides for the element and Kf equals number of flux points on the side, F̃ ξ, F̃ η

and F̃ ζ denote the common flux which take the form of Riemann fluxes for the inviscid flux and central
averaged values for viscous part, and α is flux reconstruction coefficients for standard element. Particularly,
the difference between common flux and the outer normal projection of local flux F̃ ξ|n − F ξ|n is called
“correction flux” in FR method.

II..1. Implicit time-marching method

The implicit BDF2 implemented in this paper for unsteady simulations with LU-SGS for inner iteratives is
given as ( I

∆tn
− 3

2

∂Ri

∂Ui

)
(U (k+1) − U∗)i =

3

2
Ri(U

∗) +
1

3∆tn
(Un

i − Un−1
i )− U∗

i − Un
i

∆tn
(5)

where (·)k denotes the index of the inner iterations between n−th and n+1−th time steps and (·)∗ denotes
the most recent update the symmetric lower or upper sweeps over the global domain. In order to improve
inner iterative efficiency, for boundary layer mesh with large aspect ratio cells, the gauss-seidel interatives
are performed along the “elem line” perpendicular to boundary as the element indexes shown by figure 2.

Figure 2. Line implicit reorder for boundary layer mesh

II..2. Explicit space-time expansion

For time-dependent ODE(ordinary differential equations), the so-called “space-time” type numerical method
has great potential to achieve high order time accuracy and provide more flexibility for its discretization
along time marching direction. So far, there are two types of space-time extension based on high order local
reconstruction methods: one is the global space-time DG scheme developed by van der Vegt and van der Ven7

for inviscid flow, and extended for compressible Navier-Stokes equations by Klaij et al8which results in a set
of global nonlinear equations; the other one is based on predictor-corrector method-Gassner et al9 reviewed
different types of local predictors for DG and FVM, including Cauchy-Kowalevsky(CK) procedure10-,13

continuous Galerkin predictor,14 and a local continuous extension Runge-Kutta predictor.15

The space-time extension of high order FR schemes is introduced by the present authors in16 and,17 and
results in a very efficient code with special parallel partition method with multi-constraints for load balancing
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of the non-regular time marching process, and pure-asynchronous parallel massage passing interface(MPI)
for the sake of high speed up ratio on clusters or many-core systems. Firstly rewrite Eq.(4) as

∂Ui,j

∂t
= RD

i,j(Ui) +

Nf∑
f

RC
i,j,f (Ui, U

nb
i,f ) (6)

where

RD
i,j(Ui) = − 1

|J |i,j
(∇ξ · ~F ξ(Uh

i )i,j (7)

RC
i,j,f (Ui, U

nb
i,f ) = − 1

|J |i,j

Kf∑
l=1

αj,f,l(F̃
ξ|n − F ξ|n)i,f,l (8)

For Eq.(6), start a simple integration in time of the semi-discrete formulation for j-th solution point in
i-th element from time level tn to time level tn+1

Un+1
i,j − Un

i,j =

∫ tn+1

tn

RD
i,j(Ui) +

Nf∑
f

RC
i,j,f (Ui, U

nb
i,f )dt (9)

Eq.(7) indicates RD is the flux divergence which is completely local for each element, while RC is linear
combination of “correction flux” used to update the DOFs of local element, split the right hand side of (9)
by using RD as a predictor and the time integration of RC as a corrector along time direction. This leads to
our space time expansion flux reconstruction method(STEFR) as

Un+1
i,j = vn+1

i,j +

∫ ∆τ

0

Nf∑
f

RC
i,j,f (vi(τ), v

nb
i,f (τ))dτ (10)

while ∆τ = tn+1 − tn, the space-time polynomial v(τ) is computed by a local predictor, in this work the
continuous extension Runge-Kutta method18 is adopted as

vi,j(τ) = Un
i,j +∆τ ∗

Nstages∑
l=1

bl(τ)kl

bl(τ) =

Ot∑
m=1

bl,m ∗ τm

kl = RD
i,j(vl)

vl = Un
i,j +∆τ ∗

l∑
n=1

al,nkl−1 (11)

where Ot is the order of time discretization and Nstages is related number of stages, the coefficients b and a
are given by.18

From the above development, it can be seen that the predictor procedure is completely local for every
element and the correction is only relies on time integration of correction fluxes, which implies the local time
step can be implement for time accurate simulations, and the conservation of both space and time is ensured
by one-side time integration of the “correction flux” as Eq.(10).

In actual implement, each cell has a integer index named “time tree” which records the physical time
and is updated only after correction. The model evolution with 3 elements is shown in figure 3, where the
middle red element use half time steps compared to the two blue elements and it has priority to implement its
correction by using the predicted DOFs of its neighbors. Corrections of the two blue elements will be delayed
until matched by the time integration of correction flux computed by the red element. The controlling of
this local time stepping process is cumbersome and very difficult, but very efficient once achieved because
the computational cost is not dependent on the smallest cell, and it is able to achieve arbitrary order for
time also. The history of the “time-tree” of all elements over one global time step for a real test case is
shown in figure 4.
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Figure 3. Sequence of steps of a model evoluation with 3 elements and local time stepping advancing to a new global
time

Loop iter = 1 Loop iter = 11 Loop iter = 21 Loop iter = 31

Loop iter = 41 Loop iter = 51 Loop iter = 61 Loop iter = 176

Figure 4. Snapshots of transient “time-tree” during one time-step: horizontal is element index and vertical is normalized
time tree.

III. Numerical Simulations and Analysis

All meshes used in this paper were generated by an state-of-art mesh generation system, BOXERMesh.20

III.A. Low Pressure Turbine blade

This testcase concerns the LES of the transitional and separated flow on the T106C high-lift subsonic
turbine cascade. The Reynolds number of 80.000 chosen for this work. As the inlet turbulence is very low
(turbulence intensity of 0.9%), the flow features laminar separation and a relatively slow natural transition.
Blade pressure distribution and wake total pressure loss profiles have been measured at the von Karman
institute (VKI) in the closed loop tunnel.19 The conditions are derived in A, and are summarized as:

• inlet total pressure: pt = 7189.5Pa;

• inlet total temperature: Tt = 298.15K;

• pitchwise inlet flow angle 32.7◦ from the axial direction;

• the exit static pressure pb = 5419.3Pa;

The spanwise extention of the blade is S = 0.2C, where C is the length of axial chord. Two kinds of
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a.Geometrical description of the blade section (Courtesy

VKI)

b. Fine mesh for second order simulation

Figure 5. Geometry and mesh snapshot

mesh are used for this work: 3D meshes extruded along spanwise from a 2D mesh slices around the blade,
and the full 3D hybrid unstructured meshes. All configurations and computational cost statistics for these
four simulations are given in table 1. An high order mesh generation method based on local high order
reconstruction are developed which is able to handle general unstructured meshes, the comparison of outer
normal of blade surface between original first order mesh and third order mesh after high order modification
are presented by figure 6.

Table 1. Simulation configurations and computational cost

Order&Mesh nCells nDofs y+ dt Time(h) for 1 Tp Riemann Flux Max Einner

2nd&Extrude 3× 106 1.15× 108 < 1 1× 10−7 15.4 HLLC 10−4

2nd&Hybrid 2× 106 7.3× 107 < 1 1× 10−7 16.2 HLLC 10−4

3rd&Extrude 3.5× 105 4.5× 107 < 1.3 1× 10−7 17.5 HLLC 10−4

3rd&Hybrid 5.1× 105 5.8× 107 < 1.3 1× 10−7 16.5 Rusanov 10−4

a. Original first order mesh b. Third order mesh

Figure 6. Outer normal of blade surface

The time maching method used for this case is BDF2 with BLU-SGS as inner iteratives, and all maxi-
mum relative inner iterative error are lower than 1× 10−4 to assure the time accuracy. All simulations are
performed on 8CPUs&128 cores(Intel 9600 2.60GHz Sandy Bridge).

Figure 7 show the transient iso-surface of Q-criterion for the simulation using third order with extruded
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mesh, and the time-averaged pressure distribution for the simulation using third order with hybrid unstruc-
tured mesh. The time-averaged ISO mach number is given by figure 8(a) and compared with experiment
data, from the discussion at 2nd International Workshop on High-Order CFD Methods,21 there maybe some
unmatched inlet flow angle of the simulation and real experiments which cause deviation of the results es-
pecially at the turbulent region. However, the total pressure in the wake region given by figure 8(b) still
indicate that third order simulations have less numerical dissipation even with much less cells.

a.Snapshot of transient Q-criterion for 3rd&Extrude

simulation

b. Time-averaged pressure distribution for 3rd&hybrid

simulation

Figure 7. Low pressure turbine blade result

a.Time-Average ISO Mach number b. Total pressure in the wake region

Figure 8. Mean flow coefficients and the comparison with experiment data
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III.B. Low-Re/High-Re flow around sphere

The low Reynolds number(Re=300) flow and high Reynolds number(Re=10000) flow around sphere are
simulated using hybrid unstructured meshes as figure 9 shown. The Iso-surface of Q criterion for different
simulations are given in figure 10 which indicate higher order simulation have better resolution for vortex
region. The drag coefficient Cd and Strouhal number St are listed in table 2 with the comparisons with
other calculations and experiments. The space-time method was adopted for this case for unsteady time
marching.

a.Slice of computational domain b. Mesh

Figure 9. Computational domain and mesh slice

a.Re=300,SECOND b.Re=10000, SECOND b.Re=10000, THIRD

Figure 10. Snapshot of transient ISO-Surface of Q criterion (Q=-100000)

III.C. Film-cooling hole

The geometry configurations for three different type of cooling holes are given by figure11(a). Also figure11(b) (d)
shows the 3D models of each hole, D = 4mm is the diameter for all three holes. All geometries and config-
urations are obtained from previous work.18

a. Geometry configurations b. Cylindrical hole c. Fan Shaped hole d. Fan Shaped hole with

Laid-Back

Figure 11. Cooling Hole
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Table 2. Result of Low-Re/High-Re flow around a sphere

Re Order nCells Cd Cd St St

(calc/expt) (calc/expt)

300 SECOND 401839 0.681 0.656 0.1347 0.134

0.657 0.136

0.658 0.136

0.671 0.137

10000 SECOND 1062089 0.443 0.393 0.195St1

0.438 0.181St1

0.40± 0.01 1.30-1.85St2

10000 THIRD 519747 0.4429 0.393 0.195St1

0.438 0.1879St1 0.181St1

0.40± 0.01 0.128St2 1.30-1.85St2

The flow conditions for the mainstream are given by table 3, and the Reynolds number based on main-
stream flow and the pitchwise hole spacing is Re = 1.8 × 104. This is typical of cooled blade platform
conditions. The blowing ratio MFR is defined as:

MFR =
ρcUc

ρ∞U∞
(12)

Table 3. Flow parameters of mainstream

Ma∞ U∞(m/s) Tu∞(%) T∞(K) P∞(Pa)

0.047 16 5.0 288 99600

where (·)c are flow parameters for the cooling holes given by table 4.

Table 4. Flow parameters of cooling holes

Run ID Hole type MFR Tc(K) Ncells

1 Cylindrical 0.5 273 1.09M

2 Cylindrical 1.0 273 1.09M

3 Cylindrical 1.5 273 1.09M

4 Fan Shaped 0.5 273 1.32M

5 Fan Shaped 1.0 273 1.32M

6 Fan Shaped 1.5 273 1.32M

7 Laid-Back Fan Shaped 0.5 273 1.43M

8 Laid-Back Fan Shaped 1.0 273 1.43M

9 Laid-Back Fan Shaped 1.5 273 1.43M

The computational domain is shown in figure12(a). The single inclined hole with pitchwise periodic
boundaries is placed between mainstream and the plenum with coolant flow comes from the pipe. The un-
structured meshes are generated by BOXERMesh. Local refinements were imposed inside of the cooling hole
and the downstream of coolant jets as shown in and figure12(b). Appropriate layer meshes were included
to support the near-wall flows, with y(+) < 1 enforced for the first boundary layer cells. Due to the local
reconstruction FR approach, at least second order is achieved for general unstructured meshes in this work
which is a distinct advantages for LES.

All simulations were performed on 16 Intel-Sandybridge CPUs and each CPU has 16 physical compu-
tational cores which is organized by OpenMP for higher efficiency of the space-time framework. A special
pure-asynchronous parallel massage passing interface(MPI) was developed for communication between dif-
ferent CPUs. The physical time scale Tc = D/u∞ equals to 0.00025 seconds and consumes about 1.25 hours
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on this 16× 16 core resource for cylindrical cases.
Speed up ratios(SPRs) of the current space time code compared to a standard 2 stage continuous Runge-

Kutta explicit time marching method are presented in table 5. It can be seen even for such simple geometries,
the speed up ratio achieved is higher than 20 due the very strict global minimum time step which is scaled by
∆x2

min, where ∆xmin is minimum element size commonly inside the boundary layer mesh. For a geometry
with a larger scale range, like the blade itself fully cooled, the speed up ratio could be much larger-of order
hundreds. Octree-based meshes are especially suited to the efficiency of the space-time technique.

Table 5. LES speed up ratios(SPR)

Run ID 1 2 3 4 5 6 7 8 9

SPR 26.64 26.64 26.64 21.4 21.4 21.4 24.12 24.12 24.12

a. Computational domain b. Boundary layer mesh inside of cooling hole

Figure 12. Computational domain and ISO-Surface of mesh for Laid-Back Fan-Shaped cooling hole

Figure 13. Vorticity magnititude for Fan Shaped hole with MFR = 1.5

III.D. Film cooling effectiveness

The film cooling effectiveness η is defined as

η =
Tw − T∞

Tc − T∞
(13)
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a. Cylindrical, MFR = 0.5 b. Cylindrical, MFR = 0.5 c. Cylindrical, MFR = 1.5

b. Fan Shaped, MFR = 0.5 e. Fan Shaped, MFR = 1.0 f. Laid-Back Fan Shaped, MFR = 0.5

Figure 14. Vortex structures in cross flow planes, coloured with temperature

a. Cylindrical, MFR = 1.0 b. Cylindrical, MFR = 1.5

Figure 15. Time-averged, lateral averaged film cooling effectiveness and the comparison with experiment data
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III.E. High Reynolds number airfoil flow

This case of the application of LES on an Aerospatial A-Airfoil at an angle of attack of 13.3◦ and Re =
2.1× 106, which is introduced by a project named LESFOIL,23 and special enphasis is put on transition and
separation. The computational domain is given by figure 16(a). There are two simulations performed in this
work: one adopted traditional p-enrichment at the suction side, trailing edge and wake regions as shown in
figure 16(b), where the transition and separation occur and develop; in another simulation, the enrichment
was instead of higher order polynomial(third order) while most cells are still second order as the same as
p-enrichment simulation. Detail computational configurations are listed in table 6. The spanwise extension
is 0.03C where C is the length of chord.

a. Computational domain b. p/h-enrichment region

Figure 16. Computational domain and p/h-enrichment for LESFoil

Table 6. Computational configurations of LESFoil case

Run ID nCells y+ x+ z+ SPR Time(h) for 1 Tp Computational Resource

h-enrichment 2424060 1.3 108.3 108.3 14.4673 50 16CPU×16cores

p-enrichment 1771743 1.3 108.3 108.3 14.6943 57 32CPU×16cores

It should be notice that the x+ and z+ are only refer to the suction side and trailing edge including
turbulent region, where the y+ limitation for first boundary layer mesh is enforced for the whole areafoil
surface. All simulations are performed using Intel-Sandybridge CPUs as the same as lowe pressure turbine
blade case and film cooling case. Some results can be found in figure 17 figure 19.

a. Time averaged Mach number snapshot b. Instantaneous Mach Number snapshot

Figure 17. Comparsion between mean flowfield and transient flowfield

III.F. Real geometry ship case

The number of cells for this ship with a landing helicoptor is around 73 millions, and the second order was
used for the simulation with the number of total degree of freedoms(DOFs) is over 2 billions. The very low
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Figure 18. Q-criterion: Q = -10000, 10000, 1000000

a. Mean pressure coefficients a. Mean skin-friction coefficients

Figure 19. Comparsion between time-averaged results and experiment data

mainstream flow velocity is 7m/s. Slip wall boundary condition was enfored for all surfaces of the helicoptor
in order to simplify the simulation. This case is quite large scale with the length of the whole ship is over 140
meters, while the very small parts of radar antenna is resolved as shown in figure 20, the total time levels is
17 which means the ratio of timestep is ∆tmax/∆tmin = 217 = 65536. The simulation was implemented by
64 Intel-Sandybridge CPUs with 16 cores each, and only about 12 hours are needed to solve one flow passing
time(mainstream flow pass the ship). Because of the very large geometry scale, the speed up ratio for this
case achieved around 115 compared to second order Runge-Kutta time marching with uniform timestep. The
statistics details of time levels is listed in table 7, and the iso-surface of mach number is shown in figure ??.

Figure 20. Mesh slice of a real geometry ship.
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Tab 7. Statistics of time levels

Nlevels 0 1 2 3 4 5 6 7 8
∆t

∆tmax
1.54e-5 3.1e-5 6.1e-5 1.2e-4 2.4e-4 4.8e-4 9.8e-4 2.0e-3 4.0e-2

Ncells 6 57 622 7.5e3 3.6e5 7.9e6 1.3e7 1.5e7 1.8e7
Ncells

Ntotal
8.2e-8 7.8e-7 8.5e-6 1.0e-4 0.5e-2 0.11 0.18 0.2 0.25

Nlevels 9 10 11 12 13 14 15 16
∆t

∆tmax
7.8e-3 1.6e-2 0.03125 0.0625 0.125 0.25 0.5 1

Ncells 8.4e6 7.6e6 2.4e6 3.8e5 1.1e5 40324 17756 9020
Ncells

Ntotal
0.12 0.1 0.03 0.005 0.015 0.005 2.4e-4 1.2e-4

Figure 21. Iso-surface of mach number

IV. Conclusion

This paper has introduced a very efficient LES algorithm based on high order Flux Reconstruction com-
bined with space-time integration and implementation on general, hybrid, unstructured meshes. Simulations
of different flow problems demonstrated this new solver and displayed a wide range of interesting flow physics.
The future work will try to solve large-scale, multi-scale problems with real geometries, and the study of
efficient and robust sub-grid scale model and its coordinates with this algorithm will be investigated also.
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